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Packing of Irregular Particles 

K. K A R L S S O N ,  L. SPRING 
Oy Wartsila Ab, Helsinki, Finland 

The packing of narrow fractions of irregular particles to a given density has been studied 
theoretically and experimentally. The equations given in Furnas' classical investigation have 
been altered to give more commonly valid expressions. It has also been found necessary to 
propose a new model, which better meets the experimental demands. An example is given 
of how to solve a multicomponent system by using this model. 

1. Introduction 
In several technical fields the packing of irregular 
particles to a given density is of great importance. 
Particularly this is true, when bodies of a given 
porosity or a high density and strength have to be 
manufactured. In the present paper the factors 
will be studied, which influence the packing of 
irregular particles to a minimum void. 

The task is to fill with particles the space 
occupied by air in a packing. To do this, it is 
necessary to know the shape, volume and loca- 
tion of the air inclusions. In practice, however, 
it is impossible to meet these requirements, 
particularly as it is also necessary to place the 
right particle in the right inclusion. 

Thus it is necessary to use simplified models. 
The only one so far published was developed by 
Furnas [1] in 1931. He tackles the problem by 
assuming that to a packing of a coarse compon- 
ent, a fine component can be introduced, which 
fills the space between the particles of the coarse 
component without expanding the total volume. 
The word component is used to define a certain 
fraction of particles. In practice, however, the 
total volume is not constant. In the present 
paper Furnas' equations have been altered to 
give more commonly valid expressions. Further 
a new model is proposed, which better meets the 
experimental demands. 

2. Development of Furnas' Equations 
It is possible to derive expressions for the weight 
fractions in a packing with maximum density, 
which are simpler and in better agreement with 
practice than Furnas' [1 ] equations. 

Denoting: 
d the mean value of the size of the largest and 

smallest particles in a fraction, i.e. mean aper- 
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ture value of the two adjacent sieves; 
dnthe index denoting the component. 

dl > d 2  > d . . . .  ; 
3~, the apparent density of dn; 
pn the particle density of d~. The particle density 

includes closed pores and thus varies with 
particle size; 

m, the weight of d~. 
The apparent density of the coarsest compon- 

ent, dl, is then 31 and the particle density Pl- By 
subtracting the inverse value of the particle 
density from the inverse value of the apparent 
density the volume of air per unit weight of 
component dl is given. 

w~ . . . .  (I) 

The air content of m~ weight units of component 
dl is 

air volume of d~ = rnlwl.  (2) 

Equation 2 gives the volume available for 
component d2. Using Furnas' model the weight 
m~ of d2 can be calculated: 

mz = 3emlwl (3) 
giving the ratio 

mx ml 1 
ms m l ~ w l  w l ~  (4) 

The theoretical apparent density for a two 
component mixture is 

3:r rnl @ m2 _ ml  @ m l w l ~  
= " V ml/81 = (81 +818~w0. 

(5) 

In the same way the ratio between rn2 and rna can 
be derived 
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m2 1 
- ;  = �9 (6 )  

Generally for the (n 4- 1) component this can be 
written 

mn+x = m~w~S,~+l (7) 

and the theoretical apparent density for n 
components 

~T : ~ 4- 31~2wt 4- ~233wlw~ 

4 -  3 1 ~ 2 . . .  ~ # _ 1 ~ W I W 2  �9 . . W , n _ 2 W # _ I  . ( 8 )  

3. Experimental 
The equation 7 is in a very convenient form. It 
also gives the solution for a n-component 
system. In order to check its validity an experi- 
mental series was carried out. Fired clay 
(chamotte) was chosen as particle material 
because both S and p vary with particle size due 
to closed pores. As base component a fraction 
between 4.0 and 5.0 mm was chosen. This was 
mixed in different proportions with the following 
fractions: 1.0 to 1.5 ram; 0.6 to 1.0 ram; 0.2 to 
0.6 mm and 0.074 to 0.2 mm. 

We define 

mean value of coarse fraction d~ 
mean value of fine fraction d~ 

In the different mixtures the following r-values 
will then be obtained: 3.6; 5.6; ll .3; 32.8. The 
components were thoroughly mixed and the 
loose volume of the packing was determined. 
Knowing the amount of material the correspond- 
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Figure I Experimental results for the mixture r~--- 3.6. In the 
figure are also shown the apparent densities of the 
components in the mixture, 

ing apparent density can be calculated. This is 
shown by the upper curve in figs. 1, 2, 3 and 4. 
The limits given are the 95 % probability for the 
average values. 
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Figure2 Experimental results for the mixture r ~-- 5.6. 
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Figure 3 Experimental results for the mixture r = 11.3. 

4. D i s c u s s i o n  

The particle densities of the fractions were 
determined pycnometrically and are shown in 
table I. 
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Figure 4 Exper imen ta l  resu l t s  f o r  t he  m ix tu re  r = 32.8. 

T A B L E  I Par t i c le  densities of the  f i red  clay fractions 

Fraction ,~ P2, P~, P~, P5 

4.0 to 5.0 m m  2.57 g cm -8 
1.0 to 1.5 2.65 
0.6 to 1.0 2.63 
0.2 to 0.6 2.67 
0.074 to 0.2 2.72 

Using equation 7 and the experimental values 
of  31 and 8~ given at 0 and 100 in figs. 1 to 4 the 
mixture ratio for the densest packing can be 
calculated. The results are shown in table II. 

TABLE II The densest mixture according to equation 7 

r 3.6 5.6 11.3 32.8 

mt 66.9 67.4 64.7 65.5 
ms 33.1 32.6 35.3 34.5 

100.0% 100.0% 100.0 Z 100.0% 

By comparing table I I  to figs. 1 to 4 it can be 
seen that the calculated mixture ratio falls within 
the opt imum region when r = 3.6 and r = 5.6, 
but to the left of it when r = 11.3 and r = 32.8. 
Thus equation 7 obviously does not always give 
the correct mixtures ratios. This disagreement is 
due to the fact that the expansion after mixing is 
neglected. 

5. A N e w  Model  
As the model used did not agree with the experi- 
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NEW MODEL 

FURNAS' MODEL 

PARTICLES OF THE COARSE FRACTION 

Figure 5 Comparison between Furnas '  mode l  and the  

proposed mode l .  

mental results, it was decided to alter it. We 
assume we have a two component  mixture and 
take away the finer component  without volume 
contraction. The coarse particles then remain 
hanging in the space, as shown in fig. 5. 

The apparent density of  the coarse component 
in this expanded state, is the true apparent 
density of  the component in the mixture and 
should be used in equation 7: When defined in 
this way, the apparent density obviously varies 
with both the weight and the r-value. 

It  seems very improbable that the apparent 
density in the mixture can be calculated theor- 
etically. Experimentally, however, the apparent 
density can easily be found, as we know the total 
volume of the packing and the weight of the 
coarse component. This is shown for the 
examined fractions by the open circle curves ( �9  
in figs. 1 to 4. Knowing the particle density of  
the coarse component  it is possible to calculate 
the volume of the dense material of the coarse 
component. By subtracting this from total 
volume of the packing the volume available for 
the fine component  is obtained. This volume and 
the amount  of fine component used then give the 
apparent density in the mixture for the fine 
component. These values are shown by the •  
curves in figs. 1 to 4. From the figures it can now 
be seen, that not even for very high partial values 
of one component does the apparent density in the 
mixture equal the apparent density of the pure 
fractions. In other words, even small additions of 
a fine component  cause an expansion. 

When the apparent density in mixtures now is 
known, correction factors can be worked out for 
calculating apparent densities in packings. The 
correction factor for the component  dl is denoted 
by x. By multiplying the apparent density of the 
pure fraction with x the apparent density in a 



PACKING OF IRREGULAR PARTICLES 

X 

L_ 
0 

0 

t- 

O 

L- 

O 

1"0 

0-9 

0'8 

0-7 

0-6 

0"5 

0"4 

0.3 

0 2  

0.1 = 

o ~ ~ 1 7 6  
o~ ~ o ~ ~  
So 

j o  

o J ~  ~ 

o / ~  

o / o ~ o . . ~  . - . - - ' ' ' ' ~  ~ - 

o / o ~  

~  0'8 =m 1 

~  0'7 

,,.o__ 0'6 

o - -  0.S 

o - -  0"4 

o - -  0 3  

o - -  0"2 

I I I ! I I I I I I I I I I I I I I 

2 /, 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 35 r 

Figure 6 The correction factor x as a function of r and n h. 

given mixture is obtained. The correction factor 
x for the investigated particles is graphically 
shown in fig. 6. The correction factor for the 
component d2 is denoted y and graphically shown 
in fig. 7. 

When introducing the new model the above 
derived equations have to be altered. 8 t has to be 
replaced by x31 and 82 by y32. The equation 5 
then reads 

3T = X81 + x31y82wl~ (9) 
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Figure 7 The correction factory as a function of r and m 2. 
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where 

or when inserting wl~ 

3 T = X31 -~- y3~ - -  xy(3132" (10) 
Pl 

The densest packing is obtained using equation 
10 for different compositions and choosing the 
densest one. 

6. Application to Three-Component 
Systems 

An attempt was also made to solve a three- 
component mixture. The following fractions 
were used: dl: 4.0 to 5.0 mm; d2:0.6 to 1.0 ram; 
d~: 0.074 to 0.2 mm. 

The densest packing, giving an apparent density 
of 1.64 g cm -3, was experimentally obtained for 
the mixture 

d~: 40% 
d,: 30% 
G: 30% 

100%. 
By using either equation 10 or figs. 2 and 4 the 

densest packing for the mixtures (dl + d2) and 
(dl + dz) is obtained when: 

d~: 60 60 
d 2 : 4 0  
d3 : 40 

100 100. 
Thus we start from (dl + d2) mixed in the 

above given ratio. In order to keep the right 
ratio between dl and d3 in the three-component 
mixture, the following condition must be 
satisfied: 

d 1 60  42.8% 
d~ 40 i.e, 28.6% 
da 40 28.6% 

140 100.0 % .  

This agrees very favourably with the experi- 
mental result, as a change of 5 % in the coarsest 
component hardly affects the apparent density of 
the mixture. 

The experiments also show that in a multi- 
component mixture the apparent density is 
mainly dependent on the ratio between the 
coarsest and the finest components, the compon- 
ent in between having very small effect. For 
instance the maximum apparent density for 
(dl + ds) is 1.58 g cm -a (see fig. 4). When d2 is 
added the value increases to 1.64 g cm -3. The 
apparent density of the separate components is 
about 1.2 g cm -3. Thus it has not been found 
necessary in the case described above to find a 
certain ratio between d2 and da. 

Mixtures of more than three components are 
of less interest, as the packing density does not 
increase. Clews and Green [2], for instance, have 
studied mixtures of up to five components and 
found the densest packings at three. 

7. Conclusions 
In studying the packing of narrow fractions of 
irregular particles it has been found useful to 
alter the equations given by Furnas [1 ] to more 
commonly valid expressions. When testing these 
equations, the experiments proved it necessary to 
alter Furnas' model, as a volume expansion takes 
place when mixing two or several fractions. The 
new model proposed differs from the old essen- 
tially in that the apparent density of a component 
is defined as the apparent density of the compon- 
ent in the final mixture. An application to a 
three-component system gives very good agree- 
ment between calculated and experimental 
results. 
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